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1. INTRODUCTION 

Number theory, called the Queen of Mathematics,  is a broad 

and diverse part of Mathematics that developed from the study 

of the integers. The foundations for Number theory as a 

discipline were laid by the Greek mathematician Pythagoras 

and his disciples (known as Pythagoreans). One of the oldest 

branches of mathematics itself, is the Diophantine equations 

since its origins can be found in texts of the ancient 

Babylonians, Chinese,  Egyptians, Greeks and so on[1-5,7]. 

Diophantine problems were first introduced by Diophantus of 

Alexandria who studied this topic in the third century AD and 

he was one of the first Mathematicians to introduce symbolism 

to Algebra. The theory of Diophantine equations is a treasure 

house in which the search for many hidden relation and 

properties among numbers form a treasure hunt. In fact, 

Diophantine problems dominated most of the celebrated 

unsolved mathematical problems. Certain Diophantine 

problems come from physical problems or from immediate 

Mathematical generalizations and others come from geometry 

in a variety of ways. Certain Diophantine problems are neither 

trivial nor difficult to analyze [6,8,9].  

This paper concerns with the problem of obtaining harmonic 

progression in rational numbers by employing the ternary 

quadratic equation 222 yDxz  . Some numerical examples 

are also presented. 

2. METHOD OF ANALYSIS 

The ternary quadratic equation under consideration is 

0,yDxz 222  D  and square free         (1) 

We illustrate below the process of obtaining triples in 

Harmonic progression with its elements in rationals by 

employing (1). 
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The above relation implies that the tripe
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Note that x,y,z in the above triple represent the solutions of 

the ternary quadratic equation (1). A few examples are given 

below in table 1. 

Table 1: Examples 

Remark:1Observe that the triple y)-z,
Dx

y,(z
2

z
 also 

represents  Harmonic progression  

Triple:II 

From (1), we have 
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Adding the above two equations and multiplying by 2, we have 
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It is seen that the triple 
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forms an Arithmetic progression.  

Thus the triple 
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A few example are given below in Table 2: 

Table 2: Examples 
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Remark 2: It is worth to mention that the following 

triples given by 
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also represent Harmonic progression respectively. 

Remark 3: Replacing D by 1  in the above procedure results 

presented in [10] are obtained. 

3. CONCLUSION 

In this paper, Harmonic progressions in rationals are obtained 

after performing some algebra in the ternary quadratic 

Diophantine equation 222 yDxz  . To conclude, one may 

attempt to construct progressions through other choices of 

ternary quadratic Diophantine equations. 
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